Quartile-based Multinomial Logistic Regression Analysis
Source:R/04_quartile.R
quartile_multinomial_analysis.RdAnalyzes continuous predictors by quartile groups for multinomial outcomes, fitting multiple models with sequential covariate adjustment.
Usage
quartile_multinomial_analysis(
data,
outcomes,
predictors,
models_list,
ref_level = NULL,
output_dir = NULL,
save_format = c("none", "docx", "csv", "all")
)Arguments
- data
Data frame containing all variables
- outcomes
Character vector of multinomial outcome variable names
- predictors
Character vector of continuous predictor variable names
- models_list
Named list of covariates for different models
- ref_level
Reference level for multinomial outcome (optional)
- output_dir
Output directory (optional)
- save_format
Save format: "none", "docx", "csv", "all" (default "none")
Examples
if (FALSE) { # \dontrun{
# Create test data with multinomial outcome
set.seed(123)
test_data <- data.frame(
outcome = sample(c("A", "B", "C"), 100, replace = TRUE),
predictor1 = rnorm(100),
predictor2 = rnorm(100),
cov1 = rnorm(100),
cov2 = sample(c("X", "Y"), 100, replace = TRUE)
)
models_list <- list(
model2 = c("cov1"),
model3 = c("cov1", "cov2")
)
result <- quartile_multinomial_analysis(
data = test_data,
outcomes = "outcome",
predictors = c("predictor1", "predictor2"),
models_list = models_list,
output_dir = tempdir(),
save_format = "all"
)
} # }